Identifying and Visualizing Variability in
Object-Oriented Variability-Rich Systems

Xhevahire Térnaval, Johann Mortara?, Philippe Collet?

1 Sorbonne Université, Paris, France

2 Université Céte d’Azur, Sophia Antipolis, France

SPLC’19, Paris - September 12, 2019

1/15

Problem

Identifying variability places in reusable code assets

Context: The implementation of a variability-rich system in a single code base

2/15

Problem

Identifying variability places in reusable code assets

Context: The implementation of a variability-rich system in a single code base

public abstract class Shape {
public abstract double area();
public abstract double perimeter(); /*...

3

public class Circle extends Shape {
private final double radius;

// Constructor omitted

public double area() {

}

}

return Math.PI % Math.pow(radius, 2);

public double perimeter() {

}

return 2 * Math.PI * radius;

m Diverse techniques

*/

v_rectangle

public class Rectangle extends Shape {
private final double width, length;
// Constructor omitted
public double area() {
return width * length;
}
public double perimeter() {

return 2 * (width + length);
}

public void draw(int x, int y) {
// rectangle at (x, y, width, length)
}
public void draw(Point p) {
// rectangle at (p.x, p.y, width, length)
3
¥

— Lack of approaches on identifying variation points with variants

2/15

Problem

Identifying variability places in reusable code assets

Context: The implementation of a variability-rich system in a single code base

public abstract class Shape {
public abstract double area();

3

public abstract double perimeter(); /..

public class Circle extends Shape {
private final double radius;

// Constructor omitted

public double area() {

}

}

return Math.PI % Math.pow(radius, 2);

public double perimeter() {

}

return 2 * Math.PI * radius;

m Diverse techniques

x/

v_rectangle

public class Rectangle extends Shape {
private final double width, length;
// Constructor omitted
public double area() {
return width * length;
}
public double perimeter() {

return 2 * (width + length);
3

public void draw(int x, int y) {
// rectangle at (x, y, width, length)
}
public void draw(Point p) {
// rectangle at (p.x, p.y, width, length)
3
¥

— Lack of approaches on identifying variation points with variants

But, do they have a common property so they can be uniformly identified?

2/15

Theory of centers

Assumption: Variation points are centers of attention and activity in design

3/15

Theory of centers
Assumption: Variation points are centers of attention and activity in design
Center: a field of organized force in an ob-

ject or part of an object which makes that
object or part exhibit centrality.

Christopher Alexander

Books 1 - 4: "The Nature of Order”; > 30 years; &~ 2.500 pages
3/15

Theory of centers

Assumption: Variation points are centers of attention and activity in design

Center: a field of organized force in an ob-
ject or part of an object which makes that
object or part exhibit centrality.

Christopher Alexander

There are 15 ways for making a
center, and...

A center is commonly formed
by a local symmetry

random ordered
hard to describe easy to describe

Books 1 - 4: "The Nature of Order”; > 30 years; =~ 2.500 pages

3/15

Symmetry in nature and human-made artifacts

Symmetry represents immunity to a possible change

4/15

Symmetry in nature and human-made artifacts

Symmetry represents immunity to a possible change

Local symmetries:
— it’s all about their density!

G
g

4/15

Symmetry in nature and human-made artifacts

Symmetry represents immunity to a possible change

Local symmetries:
— it's all about their density!

G

It's "everywhere” ... and also in code

4/15

Symmetry in software constructs

We rely on previous work on symmetry in software

m Symmetry breaking in software patterns. James Coplien and Liping Zhao.
2000. In International Symposium on Generative and Component-Based SE.

m Symmetry in class and type hierarchy. Liping Zhao and James Coplien. 2002.
In Proceedings of the Fortieth International Conference on Tools Pacific.

m Understanding symmetry in object-oriented languages. Liping Zhao and James
Coplien. 2003. Journal of Object Technology.

m Patterns, symmetry, and symmetry breaking. Liping Zhao. 2008. ACM.

m Toward a general formal foundation of design. Symmetry and broken
symmetry. James Coplien and Liping Zhao. 2019. Monograph (Working draft).

...and extend it in SPL engineering

5/15

Symmetry in software constructs
Symmetry in subtyping (inheritance)

<abstract=

Shape

+

areal): double

+ perimeter(): double

/

D\

Extends E:-rten\is
changes /
Circle Rectangle

+ radius: double

+ widih: double
+ length: double

+ area().double
+ perimeter():double

+areal): double

+ perimeter(): double
+ draw(int,int): void
+ draw(Point): void

A

6/15

Symmetry in software constructs

Symmetry in overloading

=abstract=

Shape

+ areal): double
+ perimeter(): double

Extends Extends
changes //
Circle Rectangle

+ radius: double

+width: double
+ length: double

+ area().double
+ perimeter().double

+ area(). double
+ perimeter(). double

+ draw(int int). void
void

Structure

changes

A

Arity

7/15

|dentifying variation points with variants

Variability implementation technique <> (local symmetry |
m variation point (commonality) <
m variants (variability) “

8/15

|dentifying variation points with variants

Variability implementation technique <> (local symmetry |
m variation point (commonality) “
m variants (variability) “

— variation points with variants can be uniformly identified by
simply identifying local symmetries in core assets

8/15

|dentifying variation points with variants

Variability implementation technique <> (local symmetry |
m variation point (commonality) <
m variants (variability) “

— variation points with variants can be uniformly identified by
simply identifying local symmetries in core assets

Symmetry in 9 techniques:

m Class as type Strategy pattern

m Class subtyping Factory pattern

m Method overriding Decorator pattern

m Method overloading Template pattern

Observer pattern

8/15

Automatic identification of vp-s with variants

@neoy]
0 git docker A«;ﬁng

fetching / parsing generating
SYMFINDER

104

Variability-rich systems Identification
in a single code base of symmetries

Visualization of vp-s

9/15

Automatic visualization of variation points

Example: JFreeChart (tag v1.5.0)

% Symfinder Show project information Hide legend jfreechart-v1.5.0 generated by symfinder version 549¢

Class o Number of variants §) strategy pattern
. Interface Method overloads F Factory pattem
(3 Abstractclass @ constructor overloads ——» Inheritance

vp_CategoryPlot
.

vp XYItemRenderer

~<vp_PiePlot

~ vp_Plot
-

-
S~ v.WaferMapPlot

N
* v_CompassPlot

10/15

Validation

8 case studies: Java, open-source, git, variability-rich

Case study Anaysed LoC

tag Java AWT 69,974
Apache CXF 3.2.7 48,655
JUnit 4.12 9,317
Apache Maven 3.6.0 105,342

tag] JHipster 2.0.28 2,535
JFreeChart 1.5.0 94,384
JavaGeom 32,755
ArgoUML 178,906

11/15

Validation

Metric 1: #places with a higher density of vp-s
Metric 2: #vp-s and #variants, at method and class level, for each

Filtering out vp-s
##vp-s with #variants

S Symfinder | show project information | Show legend jfreechart-v1.5.0 generated by symfinder version 549c

12/15

Validation

Three discerned patterns of variability

1. Places with a higher density of variability at method level have a higher
density of variability at class level

Java AWT JUnit 4.12

i
vp_Component

vp-ItemSelectable
‘*Jestﬁule
Vp_Window -

.
- .
v_Assert v_FrameworkAssert
\
F \

\
\
\

v,T\imeUut

P

13/15

Validation

Three discerned patterns of variability

1. Places with a higher density of variability at method level have a higher
density of variability at class level

2. #tvp-s seems highly correlated with #LoC

Java AWT

vp-ItemSelectable

i
vp_Component

[~

Vp_Window

13/15

Validation

Three discerned patterns of variability

1. Places with a higher density of variability at method level have a higher

density of variability at class level

#£vp-s seems highly correlated with #LoC

3. Smaller [larger] number of trees but a higher [lower| density of vp-s
— Code bases more [less| variability-rich

Java AWT

vp_ItemSelectable

i
vp_Component
L .

T
1
|
|

~

I~
U

| vp_Menu
i

i

i

Vp_Window

Maven 3.6.0

f ————— vp_RepositoryRequest
X f ([
\
\
\
i .
v_DefaultRepositoryRequest /’

_vp-ModelReader
‘// _-v-DefaultModelReader

L7 1 / o

13/15

Future Work

m ldentification of symmetry in other language features
m Building symfinder as a GitHub App
n

Exploit other software metrics to discern other patterns of variability

Extrapolate the other 14 centers’ properties, e.g., good shape

14/15

Summary

Identifying and An automatic identification and visualization
Visualizing of different kinds of vp-s with variants, through
Variability in local symmetry, in a uniform way

Obje.ct—.O.rient.ed Validated in 8 Java-based systems
Variability-Rich Developed 2 metrics: density and #vp-s
Systems| swame Discerned 3 first patterns of variability

Availability

m Public release: tag splc2019-artifact
https://github.com/DeathStar3/symfinder

m symfinder demonstration
https://deathstar3.github.io/symfinder-demo/

15/15

https://github.com/DeathStar3/symfinder
https://deathstar3.github.io/symfinder-demo/

